Electrostatic interaction of neutral semi-permeable membranes.
نویسندگان
چکیده
We consider an osmotic equilibrium between bulk solutions of polyelectrolyte bounded by semi-permeable membranes and separated by a thin film of salt-free liquid. Although the membranes are neutral, the counter-ions of the polyelectrolyte molecules permeate into the gap and lead to a steric charge separation. This gives rise to a distance-dependent membrane potential, which translates into a repulsive electrostatic disjoining pressure. From the solution of the nonlinear Poisson-Boltzmann equation, we obtain the distribution of the potential and of ions. We then derive an explicit formula for the pressure exerted on the membranes and show that it deviates from the classical van't Hoff expression for the osmotic pressure. This difference is interpreted in terms of a repulsive electrostatic disjoining pressure originating from the overlap of counterion clouds inside the gap. We also develop a simplified theory based on a linearized Poisson-Boltzmann approach. A comparison with simulation of a primitive model for the electrolyte is provided and does confirm the validity of the theoretical predictions. Beyond the fundamental result that the neutral surfaces can repel, this mechanism not only helps to control the adhesion and long-range interactions of living cells, bacteria, and vesicles, but also allows us to argue that electrostatic interactions should play enormous role in determining behavior and functions of systems bounded by semi-permeable membranes.
منابع مشابه
Electrostatic energy barriers from dielectric membranes upon approach of translocating DNA molecules.
We probe the electrostatic cost associated with the approach phase of DNA translocation events. Within an analytical theory at the Debye-Hückel level, we calculate the electrostatic energy of a rigid DNA molecule interacting with a dielectric membrane. For carbon or silicon based low permittivity neutral membranes, the DNA molecule experiences a repulsive energy barrier between 10 k(B)T and 100...
متن کاملComparison of humic acid rejection and flux decline during filtration with negatively charged and uncharged ultrafiltration membranes.
Increasingly stringent regulations for drinking water quality have stimulated the ultrafiltration (UF) to become one of the best alternatives replacing conventional drinking water treatment technologies. However, UF is not very effectively to remove humic acid due to the comparatively larger pore size compared to the size of humic acid. Fouling issue is another factor that restricts its widespr...
متن کاملThe effect of lipid demixing on the electrostatic interaction of planar membranes across a salt solution.
We study the effect of lipid demixing on the electrostatic interaction of two oppositely-charged membranes in solution, modeled here as an incompressible two-dimensional fluid mixture of neutral and charged mobile lipids. We calculate, within linear and nonlinear Poisson-Boltzmann theory, the membrane separation at which the net electrostatic force between the membranes vanishes, for a variety ...
متن کاملAn averaging principle for fast diffusions in domains separated by semi-permeable membranes
We prove an averaging principle which asserts convergence of diffusions on domains separated by semi-permeable membranes, when the speed of diffusion tends to infinity while the flux through the membranes remains constant. In the limit, points in each domain are lumped into a single state of a limit Markov chain. The limit chain’s intensities are proportional to membranes’ permeability and inve...
متن کاملInteraction of the lantibiotic nisin with mixed lipid bilayers: a 31P and 2H NMR study.
Nisin is a positively charged antibacterial peptide which binds to the negatively charged membranes of Gram-positive bacteria. The initial interaction of the peptide with model membranes of neutral (phosphatidylcholine) and negatively charged (phosphatidylcholine/phosphatidylglycerol) model lipid membranes was studied using nonperturbing solid state magic angle spinning (MAS) (31)P NMR and (2)H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 136 3 شماره
صفحات -
تاریخ انتشار 2012